D-A184 668 IMPLEMENTATION OF THE RUNGE-KUTTR-FEHLBERG METHOD FOR
SOLUTION OF ORDINAR (U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA C F MAY0 JUN 87
F/G 12/3

UNCLASSIFIED

8! -

o

R
i "
1.25 il 1.4

FFFEEER

EEEE

rrr

r
£r

FERE

AN MICROCOPY RESOLUTION TEST CHART
e NATIONAL BUREAU NFf STANDARDS -1963-A

L2

;o“'ﬁ‘\v.\t -,« t.ﬁ o

1 ‘

A% o". i
e M'%wm

P B N SR R T TR TR T e TR T R T
o 1
¥

d oTC FILE COPY :

NAVAL POSTGRADUATE SGHOOL

Monterey, California

P .

AD-A184 660

w m Y

; LTI

; ELECTE iy

i THESIS SEP 2 3 1967 %

+ l\
L]

h IMPLEMENTATION OF THE RUNGE-KUTTA-FEHLBERG

:§ METHOD FOR SOLUTION OF ORDINARY DIFFERENTIAL

,g . EQUATIONS ON A PARALLEL PROCESSOR

by

’(‘

A Colin F. Mayo

WA

Y June 1987

, Thesis Advisor: Charles E. Roberts, Jr.

Kl

A

)

R

_4

- Approved for public release; distribution is unlimited.
o ?

‘.l .

L)
!9
N

l‘

2

; 1
'* g7 9 17

Py I O T

OO 1,TAY Y 0 A0 AT O WA > A S . AN AN
CEI .’fﬁﬂﬂhwﬂk‘fdﬁﬁﬁxﬂdkﬂﬂ%?ﬂﬁ,ﬂﬁmwj» W RGN N T R

¢

REPORT DOCUMENTATION PAGE

1b RESTRICTIVE MARKINGS

ta REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

2a SECUR!TY CLASSIFICATION AUTHORITY

3 DISTRIBUTIONYAVAILABILITY OF REPORT

Approved for public release; distribution is
2b DECLASSIFICATION DOWNGRADING SCHEDULE unlimited

3 PERFORMING QRGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUWV'BER(S)

6a NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School ‘”‘3?“‘“” Naval Postgraduate School

6c ADDRESS (City. State. and ZiP Code) b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTFICATION NUMBER |
ORGANIZATION (if applicable)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK _NIT
ELEMENT NO NO NO ACCESS'ON NO

8¢ ADDRESS (City. State. and ZiP Code)

1T dinclude Secunty Clasuficaton) yyp) eMENTATION OF THE RUNGE-KUTTA-FEHLBERG METHOD FOR SOLUTION
OF ORDINARY DIFFERENTIAL EQUATIONS ON A PARALLEL PROCESSOR

tJ PERSONAL AUTHOR(S)

Mayo, Colin F.
TyRE (OF REPORT 35 T'ME COVERED 14 DATE OF REPORT (Year Month Day) |15 PAGE (OUNT
Master s Thesis FROM 0 1987 June 51

[— [——

‘B OSULFPLINENTARY NOTATION

7’ COSAT: CODES 18 SUBJECT TERMS (Continue on reverse f necessery and ident:fy by diock number)
$£.D GROUP 5UB-GROUP Runge-Kutta-Fehlberg Method, Numerical Integration,
/ Systems of Ordinary Differential Equations, Parallel
x Processor .

9 28STRACT (Continue on reverse if necessary and identify by block numober)

- A recent advance in computer architecture, the parallel processor computer, has
made it theoretically feasible to reduce the time required to integrate a system of n
ordinary differential equations by a factor of n. One established numerical technique,
the Runge-Kutta-Fehlberg method, is adapted for parallel processing on an Intel
Scientific Computer iPSC Concurrent Supercomputer. The algorithm is evaluated using a
standardized collection of systems of equations. It is concluded that this type of
parallel processor is not suited for the solution of this problem due to the
communications overhead required. Short developments of ordinary differential equations
and numerical integration methods are provided as background.

0 2SR I ONAVAILABILITY OF ABSTRACT 11 ABSTRACT SECURITY CLASSIFICATION

B nceassFEdUNLMITED T SAME AS RPT QO ornc USERS UNCLASSIFIED
J2a “AME OF RESPONSIBLE ‘NOIVIOUAL 22b TELEPHONE (Include Area Code) | 22¢ CFE(E SYMBOQL

Charles E. Roberts, Jr. (408) 646-2089 53Ro

00 FORM 1473, gamar 83 APRedition may be used until exhausted SECURITY CLASSIFICATION OF ~=i§ PAGE
All other ed:t.ons are ObsOlete

0 LOOMNO0
N ",t'.',\'q',t .:\" !'| Wil

Approved for public release; distribution is unlimited.

Implementation of the Runge-Kutta-Fehlberg Method
for Solution of Ordinary Differential Equations
on a Parallel Processor

by

Colin F. Mayo
Captain, United States Marine Corps
A.B., Coliege of the Holy Cross, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS
from the

NAVAL POSTGRADUATE SCHOOL
June 1987

(ot £ Moy

Author:
Colin F. Mayo¥
Approved by: CZ&“\LA, t ' ’ZM, 4‘)
Charles E. Roberts, Jr., Thesis Advisor

V g Art%ur L. Schoenstadt, Second Reader

e I U

b
&
Harold M. Fredricksen, Chairman,
Department of Mathematics

i Yoy T. M,.ZQ_X}\

'y 'a

¥y

' Kneale T. Marshallgr—-~.
Dean of Information and Poiicy

2

3
A
S
- 1

"‘; ‘h‘ '6. ;I'\ \‘ Q' . g.i \ “ ‘q "““Q AR |'| C‘al '

o':;e,
».
o ég'.i‘-"-t-.-." "'.'f- AN .\\”‘ ol I‘l 14y Ah ;‘v t" "! ’ [t‘ A't A' ‘%’ i\ml‘ ‘a QQ\ .Q““_'

.‘i'
,,"
¥
A

i ABSTRACT

e A recent advance in computer architecture, the parallel processor computer, has
N made it theoretically feasible to reduce the time required to integrate a system of n
' ordinary differential equations by a factor of n. One established numerical technique,
the Runge-Kutta-Fehlberg method, is adapted for parallel processing on an Intel
L, Scientific Computer iPSC Concurrent Supercomputer. The algorithm is evaluated
E:".‘ using a standardized collection of svstems of equations. It is concluded that this type
. of parallel processor is not suited for the solution of this problem due to the
0 communications overhead required. Short developments of ordinary differential
?,?; equations and numerical integration methods are provided as background.

x>
e
3

Ca
.

FE=
ra

- FF

-
-

P
s,

)

w -
-

L0 At

- — —

-~
1h'
-

Y
)
-

. e i A g S ‘ AN PO IO IO N O X O R NSO TN O i
et LR A DGO A DA T SRR A O N N L OO A R e) O AL M RSN YA
g ¥ U i B T ks) AR R Bt B °n e ST . hr Ty i Wl N

LT Al

IL.

I11.

IV.

TABLE OF CONTENTS
PRELIMINARIES ... e e 8
A, INTRODUCTION ..o e e 8
B. ORDINARY DIFFERENTIAL EQUATIONS 8
DEVELOPMENT OF NUMERICAL METHODS 11
A. TAYLORSERIESMETHOD i, 11
B. RUNGE-KUTTA METHOD o .. 12
C. RUNGE-KUTTA-FEHLBERG METHOD 14
DESCRIPTION OF SEQUENTIAL PROGRAM 16
A, MAINPROGRAM ... i e 16
B. SUBROUTINERKF4S 16
C. SUBROUTINESRKFSANDFEHL 16
IMPLEMENTATION .. e i 18
A, METHODOLOGY ... i 18
B. INTERNODAL COMMUNICATIONTIMES IS
C. ATWOEQUATIONSYSTEM i, 19
1. System Description i 19
2. Sequential Implementation i ... 20
3. Parallel ImplementationI 20
4. Parallel Implementation IT 21
D. A THREE EQUATIONSYSTEM it 23
1. System Descriptionot 23
2. Sequential Implementation L 23
3. Parallel Implementation I 23
4. Parallel Implementation II 23
E. AFOUREQUATIONSYSTEM i, 25
I. System Description i 25
2. Sequential Implementation28
4

ROSOASOHOOSOBOGOI0N OO QU
RRICRM RIS DRI R et o n

) |
3. Parallel Implementation I 25
Ef 4. Parallel Implementation [T 26
hE F. ATENEQUATION SYSTEM o, 27
‘ 1. System Descriptionc..iiuiiiiiiinnnunen.n. 27
?'f’,;;'_ 2. Sequential Implementation 27
'::‘ 3. Parallel Implementation I oL, 27
i .
N 4. Parallel Implementation IT 28
N V. RESULTS AND CONCLUSIONS ... e 30
BN}
RN A. RESULTS ..ot 30
‘sz . Two Equation SYStemovvinrinrennnnnnn.n. 30
Y 2. Three Equation Systemt 30
L 3. FourEquationSystem............... o 31
o
:::: : 4. Ten Equation System.................oiriirrrrnnnnnnnn. 31
L '
;;'::’3;: B. CONCLUSIONS ..ttt 32
”E’q'_\n“
APPENDIX A: RUNGE-KUTTA-FEHLBERG COEFFICIENTS 37
TN
ad
o APPENDIX B: SUBROUTINE FEHL ... 38
o
b APPENDIX C: IPSC CONCURRENT SUPERCOMPUTER
TECHNICAL DESCRIPTION ... oo, 19
"o ’
:E:::E APPENDIX D: PROGRAM LISTING EXCERPTS FOR THE TWO
iy EQUATION SHOTGUN SCHEME 42
I
e APPENDIX E: PROGRAM LISTING EXCERPTS FOR THE TWO
"“ EQUATION FLIP-FLOPSCHEME 34
Hy
_:3;,! APPENDIX F: PROGRAM LISTING EXCERPTS FOR THE THREE
il EQUATION TRAINSCHEME 46
" LIST OF REFERENCES «ottt e 48
‘ L]
Y,
o BIBLIOGRAPHY\ttt 19
Y
X INITIAL DISTRIBUTION LIST ...t 50
ek
1 b
e
!""D
RS
3 5
A";:l’
i
e

WO O OOV AR)
RO ;‘?'ﬂi‘ RO #‘d's\"}"i'! DROATOO

LIST OF TABLES

S 1. RUNGE-KUTTA-FEHLBERG COEFFICIENTS vl 37

VAR B A5 OO A IS OB ORI £
R TSR L N T e COGEUO LR AT

! i

LIST OF FIGURES

4.1 Shotgun Scheme i 21
4.2 Flip-flop Scheme 22
4.3 Three Equation Train Scheme i 24
4.4 Four Equation Train Scheme i, 26
4.5 Ten Equation Train Scheme it 29
5.1 Results for the Two Equation System 33
5.2 Results for the Three Equation Systemo L. RE
33 Results for the Four Equation System, 35
5.4 Results for the Ten Equation System e 36
C.1 32-Node iPSC Concurrent SUPEICOMPULEr vvunnevunennnennn. .. 39
C.2 4-Dimensional Hypercube Topology e e 41

R

'“:.Ec :7 |

BN

i

e k

o

8

L2

DO OOUOUTIOL D O RO OO AN
"’*’b,"‘-‘!)"wf-‘l“‘ﬂ“’it'f!ﬁ y g !"?0".&‘\.0?*.-"“ XS N

e

W

oy

Ny

AL I. PRFLIMINARIES

S0

W A. INTRODUCTION

:{E" With the advent of modern computers, the implementation of numerical methods
v!f'ff:: for the solution of systems of crdinary differential equations has become commonplace.
o Rather than developing new methods, the task at hand has become making current
:'.:i: methods more efficient by reducing the amount of computer time needed to solve a
:::g: system or by increasing the accuracy of the results. Previously, efforts to accomplish
’:": this task were centered on modifving existing algorithms.

. A recent advance in computer architecture, the advent of parallel processing, has
.'é"" made it theoreticallv feasible to reduce the time required to integrate a system of n
;‘:‘,n differential equations bv a factor of n, assuming the parailel processor computer
‘:::?' possesses n or more processors. This is a very significant time savings compared to
. .V those previously realized. This savings is provided by the parallel processor’s ability to
‘_: perform n different tasks, e.g. integration of n differential equations, simultaneously
;;“" rather than sequentially as is done with a computer possessing a single processor.

b In this thesis, one established method for solving systems of differential
e equations, the Runge-Kutta-Fehlberg method, 1s adapted for parallel processing on an
“ .\ Intel Scienufic Computer iPSC Concurrent Supercomputer. The algonithm is then
}» \1 evaluated using a standardized collection of systems of equations. It is found,
‘::3‘ however, that this type of parallel processor is not suited for this purpose due to the
-'.jv communications overhead required. As background. short developments of ordinary
::';‘ _ differential equations and numerical methods are presented.

¥

,3%:” B. ORDINARY DIFFERENTIAL EQUATIONS

b An equation that involves derivatives or differentials of a function or functions is
';‘f.; called a differential equation. Differential equations are further classified as ordinarv
;:'.:, or partial differential equations. If the equation is a function of ordinary derivatives, it
:::':: is an ordinary differential equation (ODE). If it is a function of partial derivatives. it is
" a partial differential equation (PDE). The order of a differential equation is the value
(“:::::, i of the highest derivative which appecars in the differential equation. For the purposes
=:.o!t:' of this thesis, the only concern is that of ordinary differential equations.

o 3

c:,:e

A

g

o

"T’:,‘. " A]

" - » ., EAON) » "\{. : -] N ey *2 T 1". ..‘..'('. ‘ R
T AR, B N 35\ ety it ORREEOMNS Saterin el e ettt

S P P WU e VO W RO U VUi PO W Sy S e v Ll e

1,,»':" A first-order ordinary differential equation is the simplest case. Consider
KN 4

e

il

g vo= flx,y) (1.1

,::"i) This equation is a first-order ordinary differential equation. The general solution of .1
,.:y‘. is a one-parameter family of curves. To select one member from this family. it is
necessary to specify an initial value. That 1s to say the initial value of the dependent
e variable is specified for any value of the independent vaniable. An example of this
'geg-', would be

Ai:‘ y' = f(-\-},’)y y(xo) = YO' {‘1.”)
e A system of n first-order equations is of the form

= fl(x’ }!lr }2! O] yn)

1
2 20 = [¥R Yo vy (1.3)

0 . ynl = rn(xy }’1,' }’.21] Yn)

¢ I
::::s where the y; (i = 1, 2.. .., n) are functions of the independent variable x and f; (1 =
()

RAPS 1. 2,...,n)are functions of the x, Ve oo ¥y The solution to 1.3 will be a familv of

ordered n-tuples of the form

I-l:u y =y ¥ (1)

" Again, to select one member of this famiiv of n-tuples, it is necessary to have an imual

208 value. In this case, the initial value problem becomes a vector equation

y = flxy), y(xg) = ¢, (1.5

X An nth-order ordinary differential equation of the form {

il WM = gk, y, 5D, (D) (1.6) |

R . . AT R > : i
y e 0 o e)) T AT KOO0 OO K R SRS UM S
“enteiabaing ERDSIRS o N R R A el e el

is solved by converting it into a set of n simultaneous first-order differential equations
of the form

U’ = Uy = fl(x,ul,...,un

UZ' = 1.13 = fz(x, ul, PR un_) (l—)
up.l” = up = fx oy, - up)

unl - g(x, ul’ sun)

W -

equations: and by substituting for y, y(l), -

by letting uy) = v, uy = y(n'l); bv differentiating each of these

,v11) in terms of uj, Uy, ..., uy. In
order to determine a unique solution to this set of simultaneous equations, initial
conditions must again be specified. These initial conditions are of the form uylc) =
diouy(e) = dy, ..., un(c) = d, which are obtained from transforming the conditions
in terms of vy and its derivatives. For further discussion of the solution of ordinary
differential equations, see [Ref. 1].

Given a system of differential equations, the problem now becomes one of
solving the system. Whenever possible, it is desirable to find an explicit solution.
However, most systems cannot be solved exactly--that is, it is impossible to obtain a
solution in elementary form. It is because of this characteristic of ordinary differential

equations that we must turn to numerical methods to obtain the solutions.

10

S

»

v

24

Lol
\ N

F A e

3

s

st

2

ey
oo

22

-

<
b

v Ly [
e

L)
SELTL

4
v

-
AN

T

.a
J‘

'c‘l Yo et

L anh atd ana otk ok o a Sk o d B o i dd
w e TROWEFT TPy Toerey TORTWY
o lod s ae Bon aad s Aol ok Mol Aol

[I. DEVELOPMENT OF NUMERICAL METHODS

A. TAYLOR SERIES METHOD

Although the Tavior series methods are not usuaily used in practical problems,
these methods must, however, be understood in order to understand the Runge-Kutta
rmetheds deseribed in the next sections. In order to soive the initial value problem
posed in Equation 1.2, we develop the relation between v and x by determining the
ceetlicients of the Taylor series in which we expand v about the point X = x,. I v{x)
has m=1 continuous derivatives on an interval | containing x,, then by Taylor's
Fermula with remainder,

5
« f v = /v - ARG - -~ hll 6 Ca X L
VXD = oveNp) R VIXMNAXG) D 2OV IR-X) (2.1)

m

. o m= +
~] mindm ’\\n"\ L R 1’(c)(.\;-xn)m L

n

for some ¢ € (X.X,). (Thomas and Finney {Ref. 2: pp. 663-665] show a detailed proof
of this theorem.) If v(x; is a solution to the inital value problem 1.2 and v(x) has
m+ | continuous derivatives. then

Vi(xqd = XL

ving = s = £ Gy =+ S

Vi) = 14‘~2)(.\n.}‘(.\'n) =fix t f‘\.}" ~ (fix + f ¥+ 7 (2.2)
= fox = 2af = GadT = G+ £

where { and its partial derivatives are all evaiuated at (x ne YXp)h.

One could continue in this manner, computing any Jerivative of v evaiuated at x
Wm)“"\'n)' in terms of f and its partial derivatives evaluated at x,. ¥(x,). It is obvious
to sec that for other than reasonabiv small values of m. the derivatives are usually
bothersome to compute. For this reason. m in Equation 2.1 1s chosen to be reasonably

small. By letting by, = (X-X[). ¥ & | I8 approximated by

\
Vo = vy o+t by = 02 i v 2 -)

(l n Yo'y (<.
-~ i L\P]' . R I‘d
(1 mhi (.\n. vyt

11

- RO SV i 3¢ . I?-‘{\ Lt i".'r*"“\'ny
Y l'q l‘q‘l ,l’. .h.‘ l' l':. ".‘!0.‘!!.‘.02‘.!.’.0 e \n‘ o "I n' .l Ml :ﬁmm

Equation 2.3 represents a single step numerical approXximation to the solution of the
initial value problem 1.2 and is known as the Tayvlor series method of order m.! From
Equation 2.1, the error of this method is represented by

Ep = (1(m+ DHAMIE, yEph, L (2.4)

where § € (X, X 4)

As seen above, the computational disadvantages of the Tavlor series method are
due to the calculation and evaluation of the derivatives t“), t(z), e f(m'” at (xn.
vy)- It will be seen in the following sections that a Runge-Kutta method of order m is
usuallv as accurate as the Taylor series of order m and is simpler to use. The Tavlor
series method. however, will be shown to be of theoretical value since the order of a

Runge-Kutta method will be defined using the Taylor series method.

B. RUNGE-KUTTA METHOD

The German mathemetician Carl Runge (1856-1927) was the first to develop a
numerical integration technique designed to approximate the Taylor series method
without requiring explicit evaluations of derivatives beyond the first while preserving
the accuracy of the Tavior series method [Ref. 3]. The technique was later improved
bv the German mathematician Martin Kurta (1867-1944) [Ref. 4] and, thus, it was
named the Runge-Kutta method.

This technique sets up a problem with undetermined parameters and uses
e : [al 2 tle] : . . \ . :
cvaluations of f{x.v) within the interval (Xp }n) and (Xp 4 v Yp+ 1) thus bypassing the
derivatives of the Tavlor series by requiring f{x, v) to be evaluated a number of

additional times within the interval. The general form of this scheme is

Vv
Ya+1 = Vn T Y wik; (2.5)
1=1

where v is the number of f{x, y) substitutions, w; are the weighting coeflicients, and the

k; satisfy the sequence

R
A
el Ipublished by the English mathematician Brook Taylor (1685-1731) in 1715,
’Of::.o however. Gregory and Leibnitz knew the series before Taylor, and John Bernoulli had
M

published a similar result in 1694 (Ref. 1: p. 106].

ﬁ 12
Y%

T R el Rt g (IR M)

~

A LI P i e M M P "'W<~
RPN "Lnf. ek I‘.ﬁi.v}t.w!ﬁ'm‘l U t &'.»'.‘ T

-
—
I

= hr(‘nv :"n)
kz = hf(xn + Czh, yn + a21kl) (26)

>
o
|

= hilxy + csh, vy = a5pky + azak;)

The values of k can be thought of as estimates of the change in y when x changes a
value of h. The problem now becomes one of determining the coeflicients w;. ¢;, and
Q- Each set of parameters will specifv the points (X, y) where f{x, v) is to be
evaluated. Therefore, this method calculates vy, o | using only a value for v, and
evaluations of f(x, v) at points between X, and X, 4 - For this reason the method is
termed self-sterting. To obtain specific values for the coeflicients, a value for v is
chosen and ¥, ., | is expanded in powers of h such that it agrees as well as possibie
with the solution <7 the ordinarv differential equation found using the Tavlor series
methed. (For a complete development see [Ref. 3).)

A popular example of this method is the classical fourth-order Runge-Kutta
method. [t is given by

¥a-1 = ¥p * (16 (kg + 2k + 2ky + ky), 27

=]

where ky = hf(xn. yn)
Xy = hflx, + h2, ¥, + k, 2)
X» = hfix, ~ h2,v

Ky = (7 = ’ 3
Ky = hnxn . h,}n + ko)

In this case, we avoid the derivatives of the Tavlor series bv performing four function
evaluations on f{x, v) in the interval (x,, v} and (X, 4 1. ¥ 4). A\s was stated earlier,
the Tavlor series method provides an error estimate for other methods. Here, as h goes
to 0, this method agrees asvmptotically with the Taylor series through the h? term.
thus, making it a fourth-order method with error term proportional to Eg [rom
Equa:ion 2.4. A disadvantage of this method is that an estimate of the local crror is
not readily available to help in choosing a suitable stepsize h.

13

C. RUNGE-KUTTA-FEHLBERG METHOD
In 1969, Erwin Fehlberg published a variation of the Runge-Kutta method which
uses an estimate of local error to select a proper stepsize [Ref. 6). For a given value of
Y [ehlberg’s method computes two estimates of v, . ; using fourth- and fifth-order
Runge-Kutta formulas. In order to obtain an estimate of local error, the two values of
¥n+ | are compared. The stepsize is then adjusted, depending on the local error.
Fehlberg first uses

6
Yp+1 =¥y * E c:k: (2.8)

where the k; satisfy

i-1
kj = hpfix, + ojhp, v, + leijki) i=1...,6. (2.9)
j

1

This method requires six function evaluations per step. As with the fourth-order
method discussed in Section 11.B, the ¢; are found by expanding v, 4 | in powers of h,
so that it agrees as well as possible with the Tavlor series solution. The coefficients
determined by Fehlberg are found in Appendix A. Fehlberg found that the two
expansions match until the hn6 term, thus, making the method fifth-order. This is a
departure from the behavior of the nth-order Runge-Kutta methods where n = 1, 2, 3,
4 which produce (n+ 1)st order error. This partially explains the popularity of the
classical fourth-order method described in the previous section; it takes two more

function evaluations to obtain one more order of accuracy. Fehlberg’'s method,

however, exploits the sixth function evaluation by determining a second value Yp+1"
using
6
. - . ¥ L., 9
Yo+ Yn +‘Z ¢;*k; (2.10)

1=

14

| N,
(TSP 1S
.o.ll»>"*.l.

v

:"ﬁ“i

This value was found to be fourth-order using the method described above. The local
error is then estimated by

L= 6k (2.11)
1

which is used for stepwise control. [Ref. 7: pp. 129-131]

Because the Runge-Kutta-Fehlberg method is generally thought of as one of the

“best methods” available for solving nonstiff systems of equations [Ref. 8], it was
chosen to adapt for parallel processing.

- -

Ok e N R
“’n“-‘k‘l .l"‘l‘:“ -.l'-‘l.all P A%y,

E———"
B
BAR
o
B
e
,':“-"‘ III. DESCRIPTION OF SEQUENTIAL PROGRAM
T
':w‘:' A FORTRAN program written by H.A. Watts and L.F. Shampine {Ref. 7: pp.
i:.::' 132-147] was chosen to be implemented. The program solves initial value problems in
e ordinary ditferential equations and is based on the Runge-Kutta-Fehlberg method
o Jescribed in Section [I.C. It is designed to solve non-stiff and muldly stiff systems of
('l differential equations when derivative evaluations are inexpensive. The program is
,’_: typically used to integrate from a given initial value to a desired final value but can
‘:{!' also be used as a one-step integrator. The program consists of a main program along
o with subroutines RKF45, RKFS, and FEHL. The following is a brief description of
o the program as it was developed for sequential processing.
2{:’;!2 A, MAIN PROGRAM
. The main program first defines the system of equations to be solved through the
; use of the problem specific subroutine F. Additionally, it defines the system'’s initial
. conditions and program parameters such as absolute and relative error tolerances, and
:'j it provides output of data and error messages. Once the system of equations and
o parameters are defined, the main program begins solution of the problem by passing
"‘:? information to subroutine RKF4S.
\:. .
%3::: B. SUBROUTINE RKF45
P! Once the main program sets up the problem, subroutine RKF45 becomes the
,-3,: interfacing routine for the solution of the problem. RKF45 first sets up work arravs
); ¢ for storage of information used during integration, thus relieving the user of lengthv
::: subroutine calling lists later in the program. [t then calls subroutine RKFS, providing
O it with the work arrays.
-'; C. SUBROUTINES RKFS AND FEHL
",;: RKFS is the subroutine which, along with subroutine FEHL, performs the
E:::.;’e integration of the system of equations. [t first establishes a munimum acceptabie
- relative error and 2 maximum number of function evaluations allowed in order to avoid
;";i::] the expense of a user’s attempt to obtain an excessive accuracy. [t next checks mnput
::::'. parameters, issuing error flags back to RKF45 as appropriate. Machine epsilon is then
;::E:,‘ computed and used in conjunction with the minimum acceptable reiative error to iimit
iy
“I:"s.. 16
R

i My
, H
R

P

LR X X9
-, .‘Q“ lv
PARNE W% |-

*
NN

MM L M

,) .r-f(#a(

»" ' A AIANA . : ' 7 ‘(‘1 'DLA'__} ‘.h\ -J.._A l grl_‘.-ﬁll)tﬁ"‘:-llq

WY SE T T T T ERTYON T YT TTINTTEW TV AU R T T W W T owees ow T om omoam m
Lol ood bl g Mk id aitat o . alh g

precision difficulties. Error flags are issued if user specified relative error tolerance is
too small. Once these preliminary tasks are complete, initialization is pertormed. This
includes setting the function evaluation counter to zero and estimating the inital
integration stepsize H. Throughout the program, the stepsize is not allowed to become
smaller than 26 units of roundcf in the dependent variable T.

Once stepsize 1s computed anc checked, subroutine FEHL is called. Subroutine
FEHL contains the heart of the integrator in the form of the FORTRAN equivaicent ¢f
the Runge-Kutta-Fehloerg formulas represented in Equaticns 2.8-2.10. Because of its
importance, subroutine FEHL is included as Appendix B. FEHL performs the
integration and returns to RKFS which in turn implements Equation 2.1 in order 0
determine local error and test to sce if the integraticn step was successful. If
unsuccessful, the stepsize is reduced and integration is attempted again. If successful,
the sciution at T+ H is stored and the components of the svstem of equations are
reevaiuated at T+ H using subroutine F. The function evaluation counter 1s changed
to reflect the function evaluations performed in FEHL. This integration process
continues until the {inal location is reached causing program flow to return to the main
program which provides output of the final solution.

17

KPR .,:r:._.{ o

Fag g

._,

i\ﬂ

AN R EYEOE G A

.‘?'1,...'4‘?'0\“.‘:""-.?.; ' ‘ ."‘.'. A%

IV. IMPLEMENTATION

A. METHODOLOGY

In order to test the hvpothesis that the time required to integrate a syvstem of n
ordinary differential equations can be reduced by a factor of n through parallel
processing, the program described in Chapter Il was implemented on an Intel
Scientific Computer iPSC Concurrent Supercomputer. Appendix C contains a
technical description of this computer. The particular computer used in this thests
possesses 16 processors thus making it a 16-node or d-dimensional hvpercube, as
explained in the appendix.

The general scheme of the testing of this hyvpothesis was to choose svstems to be
integrated from a standard suite of problems used to test the performance of other
integrator programs [Ref. 9: pp. 617-621]. Four systems were chosen in order to test
perfcrmance of both small and moderate sized systems. As was done in the reference,
the interval of integration for all implementations was [0, 20]. The constraint of only
examining small and moderate sized systems was imparted due to the number of
available independent processors being 16 or less. The svstems chosen consist of 2
equation, 3 equation, 4 equation, and 10 equation svstems. Each problem was first
solved sequentially and timed on a single processor of the hypercube by adapting the
code previously described. thus providing a sequential time standard to be compared
with parailel run umes. Next, the Runge-Kutta-Fehlberg algorithm was adapted for
parallel processing using varving schemes to optimize performance of the hypercube.
The svstems were then solved using thesc schemes and timed. Detailed descriptions of
cach svstem’s implementation are contained in this chapter following a discussion of
internodal communication times.

B. INTERNODAL COMMUNICATION TIMES

The theoretical feasibility of reducing integration time by a factor of n assumes
that the time required to pass information between processors is minimal when
compared to the speed of computation. Time spent in communicating 1s a critical
factor in the implementation of an integrator of svstems of ordinary dJifferential
equations since, after each integration step, the solutions to each component of the

svstem must be combined at a central location. This requires, for every step in the

N

AR - L L]
"

> W e N A A TR A AT T T VR N PN
bl andatediniiion G A R RO RN G RN AN i

t“.

S

:':;;: integration, a message pass back to a central node from each node tasked with

:",;'. processing a separate component of the svstem of equations. For this reason. the

‘,'7; hypercube’s internodal communication times were empirically determined for later use
in minimizing tota! time spent in communication when implementing the parallel

f..::;‘: algorithms.

‘.'\:: Based on the topology of the dJ-dimensional hypercube, as is discussed in

'-"‘r _ Appendix C, it was decided to determine communication time for a message sent round
trip {from the host to the cube as well as between two nodes of distance 1, 2, 3, and 4

:;‘. frcm each other. For these timings, a message of length 4 bytes was sent round trip

;?51' 1000 times and an average round trip time was calculated. This experiment was 1

" periormed a total of ten umes for each and a final average round trip time was found. |
From the hest to the cube. average round trip time was 02308 seconds. Average

é‘{: round trip times between nodes whose internodal distances are 1, 2, 3, and 4 were |

:;::. 002709 seconds, .005317 seconds, .000613 seconds, and .007797 seconds respectively.

?.f::' In addition. message passing was aiso timed for messages of length 16, 32, 40, and S0

:T byvtes. These times were similar to those found using the 4 byte long message, thus

\t showing that internodal communication times are not a function of message length.

E}' Three conclusions may be drawn from these results. First, when minimization of

:,3 commun;cations time is desired, the host should be used onlv to house the main

’ program and provide input and output. It should not be used as a "seventeenth” node

_ﬁz ' due to the high relative order of host to cube communication time as compared with

b :E internodal communication times. Secondlv, to minimize the total communication time

'é in a given parailel aigorithm, internodal distances must be considered when assigning

J tasks to specific nodes. Thus, in order to attain minimum program run times, parallel

"u algorithms must create an optimum hypercube topology for a given system of

*,] equations based on internodal distances. Thirdlv, since communication tine is not

: . message length dependent, it can also be concluded that a single long message is

" prelerred to several short messages containing the same information.

&

" C. A TWO EQUATION SYSTEM

:' 4 1. System Description

Kl Equation 4.1 depicts the two equatiocn system chosen. [t represents the

v, growth of two conflicting populations.
o : vi0= Ay T ovva) Vi) = L (4.1
iy

e e mea . A Tt AT AN
e P QRS F V0 o : 0 LY (‘-'\'"'7'5*"‘4. PRGN
AN '.'0 y o OLR .'u."n'. '»'n SO iy i.\'i‘. Lo . L SR YAY PRIV .

2. Sequential Implementation

Sequental implementation was accomplished by adapting the integrator
program described in Chapter Il to run at node 0. This adaptation includes a
subroutine F tailored to Equation 4.1. A main program, running at the host, loaded
the integrator program to node 0 and provided output of integration results and
sequential run times. It should be noted that these run times do not include time
necessary to load the integrator program to node 0.

3. Parallel Implementation 1

The paraliclization scheme thought to be most natural, i.e. sending component
1 to node I, component 2 to node 2, .. , component n to node n, was next
implemented. This scheme was termed “shotgun” and consists of a main program at
the host, the modified integrator program less subroutine FEHL at node 0, and node
programs at nodes 1 and 2. Excerpts from the node 0 program and the node | and
node 2 programs are listed in Appendix D.

Again, the main program loads the node programs and outputs integration
results and parallel run times. The node 0 program is the driver program for the
integration. It has been modified by removing subroutine FEHL and adding
communications with nodes 1 and 2 which evaluate components 1 and 2 of the svstem
respectively. It should be noted that these node assignments were made in order to
insure internodal distances were minimized. Referring to Figure 4.1, the reason that
this process was termed “shotgun” was due to the fact that the node 0 program sends
and recetves information from the nodes processing the component computations in a
“shotgun” fashion.

A typical integration step takes place as in the sequential program except that
instead of calling subroutine FEHL, the node 0 program first sends the component
nodes the initial y vector. Although this message passing is sequential. the
computation at the nodes does overlap. providing concurrent component processing.
The component nodes perform the first function evaluation. using subroutine FNODE,
and the first Runge-Kutta-Fehlberg step. This information is then sent back to node 0.
This process takes place five times per integration step. Node 0 then computes a
solution at the new location T+ H, computes an appropriate stepsize, and again calls

the component nodes to continue integration.

In general, the “shotgun” scheme may be extended to a 16-node hypercube to
integrate systems up to size fifteen. For this scheme, the cost in number of message

transmissions is represented by Equation 4.2 .

20

o« d‘.-(A -

ety

T L

o Figure 4.1 Shotgun Scheme.

' = 9 ’ ‘ N
i COST = 2 X NEQN x NFE (4.2)

where NEQN is the size of the system and NFE is the number of function evaluations.
il Since the number of function evaluations increases as the error tolerances are
o decreased, integration times can be expected to increase due both to the increased
:%: ‘ number of computations required, as well as the increased communications overhead
’ requircment. For this system of two equations, the communications overhead in terms
:::, of the number of message passes performed is four times the number of function
! evaluations.
) 4. Parallel Implementation I1
—_ In order to reduce the communications overhead present in the “shotgun”
2 implementation, a second integration scheme was developed. This new scheme, termed
z‘.‘_y,‘ “tlip-flop”, involves sending information from node O to nodes | and 3 and then

A performing the integration step through a series of computations at these two nodes
XA

and message passcs between them. Figure 4.2 depicts this scheme and program
. excerpts are contained in Appendix E.

‘é Again the program at the host provides loading of the three node programs
bt and output of the results. The node 0 program is the driver for the integration. The

- ’ -

! » - -

“ALK L IS\ AR \ P 8
] » Q f h ‘ » ”
.c‘i.«‘l‘c’! ‘I.’S".'é, A RO

. - w L
[R . - vh;,‘\. -‘(_l’__ \ :) '.‘
ﬁ \‘ AN] ‘ ’ g [X X (N "‘f ; o] 0‘0 a !‘& A !'¢ ?'A ’* S .

X

e’ 3 g . .
PRCAOSLNOA KA i RN

Figure 4.2 Flip-flop Scheme.

158 integrator segment of the original sequential code was again modified. It now only
b sends and receives one message from nodes 1 and 3 for a total of four message passcs
per integration step. Node | computes function evaluations for the first component,
»‘I:Q}:' node 3 tor the second. First, node 0 sends the initial information to each component
) node and these nodes compute the first function evaluation for the respective
e component. Once completed, the two component nodes exchange information in a
J “flip-flop” manner and then proceed with their respective second function evaluation.
.;-‘.:: This process continues until all of the function evaluations in the Runge-Kutta-
ey Fehlberg scheme are completed at the component nodes, at which time nodes 1 and 3
R transmut their final component solutions back to node 0. The node O integrator

program proceeds by advancing the integration as was done in previous programs.

e In terms of communication overhead, the “flip-flop” scheme is superior to the

“shotgun” scheme. The cost, in terms of message transmissions, is represented by
1 Cquation 4.3 .

el COST = 2.8 x NFE (4.3)

-
e

o

9

.- . W P ANt [
O AR '
’1. AR Ja’"q.q‘: v“‘“’i,Q\i‘C l..;“)

- g

A
".!ll

A UL vy 1 « n g . .-.- -.”. - ..‘ .-.- '...",. ..‘ . "
’;? ’fv‘.’»""’it Jl%-'.‘i . ! :;"A‘- e "i.‘- B ¢ L g”‘l’»'#i-“i!d‘l.'“'n" . "‘“‘! ’ l"n‘.l ¥ i“o.vh‘ RO R v’.."‘."'

. -
O b "
.za’?'l’q’.’.’.'\’bc‘ﬂfﬂ.l’f

where NFE is the number of function evaluations. The cost is derived from the fact
that fourteen message transmissions occur during the computation of five function
evaluations. These include ten between nodes 1 and 3, two between node 0 and node
1. and two between node 0 and node 3, as shown in Figure 4.2 . This cost is thirty

percent of the cost of the “shotgun” algorithm for the two equation system.

D. A THREE EQUATION SYSTEM
I. System Description

The three equation system chosen is depicted in Equation 4.4 and represents a
linear chemical reaction.

Vi'= T ¥t v v(0) = 2,
Yoi= vyt 2y tyy o ¥(0) =0, (4.4)
vy = Y27y, v3(0) =1

2. Sequential Implementation
Sequential implementation was performed in the same manner described for
the two equation system and by modifving the subroutine F to reflect Equation 4.4 .
3. Parallel Implementation |
The three equation system was first run parallel using the “shotgun”
integration scheme with node O for the integrator program and nodes 1, 2, and 4 for
the ccmponent programs. Nodes 1, 2, and 4 were chosen to again minimize internodal
distances. Program excerpts are not included for this implementation as theyv are minor
modifications of those found in Appendix D. From Equation 4.2, it can be determined
that the the cost of solving the three equation system by the “shotgun” method is equal
to six times the number of function evaluations.
4. Parallel Implementation 11
An additional scheme was developed to decrease the total integration time for
the three equation system. It was termed the “train” scheme due to its use of messages
in the form of a real valued vector of size seventeen which is passed from node to node
during integration. The vector contains information necessary for integration including
values for T. stepsize H, v values, v values and computed derivatives. Upon the
message's arrival at a node, the node performs function evaluatiens for its respective
component, updates information in the message, and passes it on. An analogy can be
made between the process of updating information in the message and filling cars in a
train; thus the name “train.”

[o TR S O L e G B e o e P B AR N e
S o R T e T NN MDA s
R TR R AR A TR R AT s S aeeaty! Sttt batityepl

P o™

_f‘s.; Figure 4.3 Three Equation Train Scheme.

'5:' Figure 4.3 depicts this integration scheme and program excerpts are listed in
ey Appendix F. Node 0 is used to run the driver program while the three components of
the system are processed at nodes 1, 2, and 3. Nodes 1 and 2 were chosen since they

ke are of minimal distance to node 0, whereas, node 3 was chosen for its adjacency to
‘:g node 1.
*'o Referring to Figure 4.3 , the "train” scheme will be explained in terms of
M:". message pass time frames, meaning the time frame during which a message is passed
;""' between two nodes. In the first time frame, node 0 computes the first Runge-Kutta-
';:‘.:: Fehlberg function evaluation and sends the information “"train” to node 1 which
.’_‘, performs the sccond function evaluation. While this computation is being performed,
- the second time frame begins when node 0 sends the integration information to node 2.
'.;;;, Upon completion of its computation, node | updates the information pertaining to its
‘:E' component and sends the “train” to node 3. At this point nodes 2 and 3 are
= performing their computations for the first {unction evaluation. As a worst case, it is
e assumed that node 3 sends its updated information to node 0 during the third time
9‘ frume and that node 2 returns its information during a fourth time frame. Throughout
v‘) this process, as information is received at node 0, the updated values are placed in a
X bufler until all component nodes return their updates. This completes one function
l:_”i
.

e ;

e

B

";m'

. .-\'.:"\\'\ *:-,1

'&."‘,_“., i
AN AN LN Y

i s %) ALOISA0 SOl ALY G
R T N Rt A K KOS Tl '}.:'.",a, £

i adu 2.2 ara ans aMA - anh-adl ohd ahf ol aRA- kAol YOI N SO T VT YO O O

evaluation which takes a maximum of four message pass time frames during which five
message passes occurred. This cycle is repeated until six function evaluations have
ceen performed. Upon completion of the function evaluations, node 0 selects a new
stepsize H and continues integration at the new location T+ H.

In this topology. for one function evaluation. five message passes have been
accomplished in the time associated with four. This gives a cost, in terms of message

trarsmissions, as

COST = 4 x NFE {4.5)

where NFE is the number of function evaluations. This value is two thirds of the cost

associated with the “shotgun” scheme for the three equation system.

E. A FOUR EQUATION SYSTEM
1. System Description
The four equation syvstem implemented is a two bodyv orbit problem and is

represented in Equation 4.6 .

YiT = v i =1-g

vy o= vy V(0) = 0, (4.6
o 2w 232 T o= o

v3i= T vy Vo) e ¥3(0)=0,

R D N 6 S Tl 5 e vy(0) = ({1 + &) (1l —en’ -,

¢ = .9, where ¢ is the eccentricity of the orbit.

2. Sequential Implementation

Sequential implementation was performed in the same manner as described for

the two equation svstem and by modifving the subroutine F to reflect Egquation 4.6
3. Parallel Implementation 1

The four equation system was first run parallel using the “shotgun” integration
scheme with node O for the integrator program and nodes I. 2, 4. and N {tr the
component programs. Again, these nodes were chosen to munimize mternodal
distances. Program excerpts are not included for this implementation as theyv are minor
modificaticns of those found in Appendix D. From Equation 4.2, the cost of solving
the four equation system with the “shotgun” method is equal to eight times the number

of function evaluations.

|)
‘N

. .) . . PRI D L NN A "W BN
NG P Lo o ot o RS

)
bt 00 88

4. Parallel Implementation II

The four equation system was also run using the “train” scheme. As shown in

Figure 4.4 Four Equation Train Scheme.

Figure 4.4, this application employs nodes 0 through 4. Nodes 1, 2, and 4 were chosen
for their adjacency to node 0 and node 3 was chosen for its adjacency to nodes | and 2.
As in the three equation application, node 0 runs the driver program. Nodes 1 through
4 process their respective components as was done by the component nodes for the
three equation system.

The integration process can again be described using message pass time
frames. In the first time frame, node 0 makes the first Runge-Kutta-Fehiberg function
evaluation and sends a vector message containing twenty-two pieces of information
necessary for integration to node 1. Node 1 computes the second function evaluation
for its component. In the second time frame, the “train” message is again sent out by
nodc 1, this time to node 4 Node 4 in turn computes its function evaluation and sends
updated information to node 0 where it is stored in a buffer until the other “train”
message arrives. During the second time frame, node 1 also sends its updated message

to node 3. In the third time frame, node 3 computes and sends its results to node 2

Finally, in the fourth time frame, node 2 computes new information and sends the

W W= RN ONEETE RS R T T T T

message containing updated information from nodes 1. 2, and 3 10 node 0. In all. four
message pass time frames have elapsed upon node O receiving ail component
information necessary for continuing integration. This cycle repeats untl all «ix
functicn evaluations are accomplished, causing node 0 to recomputc stepsize H and
continuing integration at T+ H.

As with the three equation “train” implementation, the communications <ost is
COST = 4 X NFE (4.7

where NFE is the number of function evaluations. This is half the cost of the four

equation “shotgun” scheme.

F. A TEN EQUATION SYSTEM
1. System Description
The radioactive decay chain problem listed in Equation 4.8 was chosen as the
ten equation system.

Vi = Ty ¥1(0) =1,
Yo = v T Y ¥20) =0,
Y= ¥y T ¥y v3(0) =0,
Yy= ¥y T vy ¥4(0) =0,
Y§ = Y5 T Vs v5(0) =0, (4.8
Y6 = Y5 T Ve ¥6l0) =0,
Vi = Vg T vy, v7(0) =0,
¥g' = ¥V7 T Ve vg(0) =0,
Y9 = ¥g = Vo Yg(0) = 0,
Y100 Yo ¥10l0) = 0.

2. Sequential Implementation
Sequential implementation was performed in the same manner as described [or
the two equation svstem and by modifving the subroutine F to re{lect Equation 4.5 .
3. Parallel Implementation 1
The ten equation system was first run parallel using the “shotgun” integration
scheme with node 0 for the integrator program and nodes 1 through 10 {uor the

component programs. In this case, internodal distances were not considered in the

R T &

v . han = bl e - e _—“7‘“-7
T
t’ |:
R . . - .
o node assignments. Program excerpts are not included for this implementation as they
" : :
e are minor modifications of those found in Appendix D. From Equation 4.2, the cost
s . . .
W of solving the ten equation system with the “shotgun” method is equal to twenty times
. the number of function evaluations.
,
:’_: 4. Parallel Implementation 11
Ho The ten equation systern was also implemented using the message “train
'
h technique. Figure 4.5 depicts the topology of the implementation. Nodes 0 through 10
-~ were emploved using node 0 as the driver and nodes 1 through 10 for component
) «
N programs. Minimization of internodal distances was taken into account. As can be
’
4, . . - . .y .
J:: seen in Figure 4.5 , the four equation algorithm was modified to have three message
s “trains.” Information from nodes 1, 2, and 3; nodes 4, 3, 6, and 7; and nodes 8, 9. and
. 10 is contained in each of the three messages. The computation flow is the same as the
)‘ ‘ ~ -
b X four equation algorithm except that node 1 transmits the message “train” to node 5
! : prior to performing its own function evaluation, then sends the updated message to
. node 3. Six time frames elapse during the course of a single function evaluation.
?f During this period. thirteen message passes occur. The cost in communications
L)
) overhead can be expressed as
ot
SN .
e COST = 6 X NFE (4.9)
"’)
: :, where NFE is the number of function evaluations. When compared to the “shotgun”
2
o5 implementation, a seventy percent time savings is theoretically attained.
ad
e}
J
R
b
b0
1.l.l:
i'J‘
e
e
) N
e 28
>,
I,:z
o -
o
4
("‘-P'
.

Wig 10 SRy W N VY y N W %)
TN) P
). S'n!\ n,l'ﬂ ';q.ler}. ») A% N A% WV, » AR TN o

AR A O AW
AR AT J:’!o':‘:’":!:‘::ﬁ 4,8

) Figure 4.5 Ten Equation Train Scheme.

".)’! 29

.) L1 l)
. o AR . "% .ac«su..‘n Ve ;chtl e
AN O A AL IS KRR ‘h.u R e R Rt bl -

- hada Ak kade Rk Aol d i iotiiididadidiaibedi ko indietialhdonihfiadiha it od o sl e |

V. RESULTS AND CONCLUSIONS

A. RESULTS

Results of the sequential and parallel implementations described in Chapter IV
are displayed graphically in Figures §.1 through 5.4. For all implementations, the
interval of integration was [0, 20], the absolute error tolerance set equal to 0.0, and the
relative error tolerance was varied for each system as indicated below. In all four
cases, the sequential implementation was fastest while the “shotgun” scheme was
slowest. The “flip-flop” and “train” schemes resulted in reduced run times from those
of the "shotgun” scheme. It is clear that these reductions, resulted from the lowering of
the communications overhead required in the “shotgun” scheme.

1. Two Equation System

For all implementations, the two equation system was solved using relative

error tolerances of 10 for n = 3, 4, ... , 8. The number of function evaluations
performed was the same for all implementations and ranged from 403 to 2622
corresponding to relative error tolerances of 10-3 and 1078 respectivelv. The “shotgun”
scheme resulted in run times approximately eleven times longer than the sequentia! run
times. The run times for the "flip-flop” implementation were approximately three and
one half times those of the sequential runs and resulted in a seventy percent time
savings over the “shotgun” times. This savings is in keeping with the comparison of
equations 4.2 and 4.3 and 1t affirms that the communications overhead is the primary
cause of parallel run times being slower than sequential run times for this algorithm.

2. Three Equation System

Relative error tolerances for the three equation system were successively set at

10% forn = 3, 4, ..., 7. The corresponding number of function evaluations ranged
from 481 to 2418. Here, the “shotgun” run times were approximately twenty times the
sequential run times, while the run times for the “train” scheme were approximately
fourteen times the sequential run times. Again, the relationship between the
communications overhead of the two parallel methods, as expressed in Equations 4.2
and 4.5, is upheld. The “train” scheme, in fact, attained run times that were about two

thirds the run times for the “shotgun” scheme.

30

i

wrTerv

e s e Ao 4 w LA-a Aaa Ata Ao o das dae A
v meeass 40 g an an 4 L Ad and A Bk acs ba Aok bl A d g
"
N

3. Four Equation System

The number of function evaluations performed in solving the four equation
system ranged from 678 to 2771. These values corresponded to relative error
tolerances ranging from 10°3 10 107 “Shotgun” run times were approximately thirteen
times sequential run times. Run times attained by the “train” scheme were seven to
nine times those attained by the sequential runs and resulted in a seventy percent time
savings over the “shotgun” scheme. This is a better resuit than encountered in the
three equation “train” implementation because of the fact that the topologies of each
scheme required the same number of message pass tme frames for one function
evaluation while the number of communications required in the “shotgun” scheme
increasaed by two for the four equaticn svstemn. Equations 4.2 and 4.7 predicted a fifty
percent time savings going from the “shotgun” to the "train” implementation. The fact
that the actual resulting savings was twentv percent better can be explained by looking
at the Jerivation of Equation 4.7. It was derived using an upper bound of four
message pass time frames when in fact the required number is 'ikely to be somewhat
less than the upper bound due to the semisequential nature of the “train” scheme’s
topology.

4. Ten Equation System

Finallv, for the largest of the four systems implemented, relative error
tolerances were varied from 1073 through 1010, The minimum number of function
evaluations was 232 corresponding to 1073 while the maximury was 1639 for the error
tolerance 10719, “Shotgun” timing results were approximately seventeen times the
correspending sequential results. whereas the “train” scheme results were a more
respectable cight times the elapsed sequential run times. The savings over the
“shotgun” results attained by the “train” scheme were from fifty-two to sixty percent of
the “shctgun” times. These savings values are less than the theoretical savings
predicted using Equations 4.2 and 4.9. Most likely, this disparity is due to the
complexity of the topology of the ten equation “train” scheme as compared to the
others. [t is difficult to predict the time loss duc to message collisions which occur at
node 0 as the message “trains” return with their updated information. Therelore, the
predicted number of elapsed time frames in Equation 4.9 is a "best guess” estimate and

appears 1o be optimistic.

e

b
! j
"_:':‘ i
‘.“f.
NN B. CONCLUSIONS
M The thecretical reduction of times required to solve svstems of ordinarv
f!. differential equations by a factor of n was not attained through parallel processing. In
. fact, times required to solve systems of equations using parallel algorithms on the
ol hypercube were greater than those of sequential algorithms. It was found that this is
' , S
l."'\.: due to the communications overhead inherent in internodal message passing. When
et this high overhead is coupled with the requirement of numerical integration techniques
.. to combine updated integration information from each system component after each
)
:::::l function evaluation. parallel processing becomes ill suited. Two possible solutions to
\Q this problem nught be (i) increased communications speeds within the hypercube or (ii)
::"I. -) , .
L a small amount of available common memory for all the cube’s nodes. This common

memory would alleviate the need to artificially create it as was done by passing the
“train” message from node to node and then transferring updated data in the “train” to
a bufler at the driver node. The lack of any shared memory negated the concurrent
processing of a system’s components at the nodes by requiring message passes back to
the driver node. Therefore, it is concluded that, due to the communications overhead
encountered in conjuction with the manner in which systems of ordinary differential

equations are numerically solved. parallel processors with totally distributed memory

are not suited for the solution of systems of ordinary differential equations.

. Additionally, several general conclusions may be drawn about paralle] processing
™ on the hvpercube. First, the "natural” conversion of an existing sequential algorithm
N to a parallel aigorithm may not be the best choice. This point was clearly supported in
the failings of the "shotgun” implementations compared to the “train” implementations.
g Secondly, it is imperative to consider internodal adjacency and distances when
Ml developing paraliel algorithms. This was evidenced by the empirical determination of

- internodal message pass times. Finaily, parallel processing in itself is not a panacea. It

pm is well suited and affords large time savings to many applications; however, it has becn

- shown here that for at least one application. parallel processing causes a significant
)
W)

k Ceve A . . : racc,
na time loss over sequential processing.

.-
0
o)

»d

[]

P O Nt VRS LR NN
P) Coe T Y
’y .’3.”'."!.'%,-",., i!‘-".t",ﬂ -90 M) G ()

oo
» ‘-
13

T A b

Q |
N) "
SHOTGUN /
: ol
L} —_ "
%))
Q
=z)
o ""
gk
N
S’ "’
L
=
-
, oL .
. FLIP=FLOP, ./
* "“ //
-~ j
Pt ’,/
- ///,
: J SEQUENTIAL _.
N
3 4 5 5 - .
ERROR TOLERANCE (E-)
. Figure 5.1 Results for the Two Equation System.
¥
[
L}
: 33
L]

e
\

- <
AR et

’a_.-“ .. 8, * " A- .‘ "'. " N v
B D s L

7 o ‘ !‘.0 NI o
A% hﬁ.% }‘0““ Q,\)b::‘\ Pl"’. ‘.i M T

{ Iyt X U0 .’ . g
EHEMLI I Al

60

40

22
TIME (SECONDS)

2
20
\
_.‘
2y
>
Z

e &8
H
[}
!
i
E
i
5
\

e SEQUENTIAL

L) o W =1 o ol 1] 1 - 1 1

3 4 5 6 7
hald ERROR TOLERANCE (E-)

- Figure 5.2 Results for the Three Equation System.

N O IRy AR O CALA PR LAY CR R ri \ORL ~.'\. i 0'.-
= A “ S Tw0 -\. !,“
(N lq"l" ’IA ‘N " ' 7 ll’ ', 1 b ‘m X .’ l .k 7y 4%, 0% A% 4% Y () e\ x ’., > X . ‘0 W "‘l ’. W, l. 8% ~lil l!\“'u o).

TIME (SECONDS)

60

40

20

.
/
¢
- ,
’
‘
’
,
’
,
’
’
’
’
’
.
.
’
‘
‘
- ’
/
’
‘
’
’
’
.
0
P
,
:
’
/
’
B
.
)
/
- /
’
‘
’
’
’
’
’
4
*
’
’
’
’,
’
7/
.
.
— »”
.
’
.
.
.
.
,
.
.
.
.
.
.
.
,
e
".
-
4’-
-‘-
-’ -
P -
- ”
- -
-
P
-
-
-
”
-
-
-
P
- -
”
’—”
-
-
-
-
- TIA
S SEQUEN
———T e

—
- e o
O

ERROR TOLERANCE (E-)

Figure 5.3 Results for the Four Equation System.

S i s h e a-g e ash anh abd Al alA it SRS FometooTo=

TIME (SECONDS)

40

100

80

60

20

——avmmaee

ERROR TOLERANCE (E-)

) abﬂ.'.ﬁ}! L

Figure §.4 Results for the Ten Equation System.

e APPENDIX A
RUNGE-KUTTA-FEHLBERG COEFFICIENTS

W TABLE 1
RUNGE-KUTTA-FEHLBERG COEFFICIENTS

i ﬁij € ! e * ‘

I 16/135
1/4 174 Y]

3/8 3/32 9/32 6656/12825
12713 193272197 -7200/2197 7296/2197 28561/56420
1 | 439/216 -3 3680/513 -845/4104 -9/50

ez | -8/27 2 -3544,2565 1859/1404¢ -11/40 2/55

[25/216
! e i
: 1408/2565;
1 2197/6106 ;
| |
|

-1/5
0

~

Car e e~ - e P L I PRI W W LN W
L et D D O o st e e B O AN e adad tiay 0

. or A o YT N Ty
N, w) BT RO e RS IR M RO NN
% -.M'l:' AN RGN AT A TN e AR T3 D oS0 3 I W i T W o DS R R I (L)

Dadeaniniih i aadill St o e

W S 2 IO T W T W W W W W WY wvw TR T T - hathliaihnd
W
)

/ APPENDIX B
SUBROUTINE FEHL

-

SUBROUTINE FEHL
FEHLBERG FOURTH-FIFTH ORDER RUNGE-KUTTA METHOD

FEHL INTEGRATES A SVSTEM OF NEQN FIRST ORDER ‘
ORCINARY DIFFERENTIAL EQUATIONS OF THE FORM

- -
) g;‘f g
T—‘U‘vaq

c
C
¢
¢
Aty e D(1)/DI=E(T, V(1) ... Y(NEQN)
1Y) ¢ WHERE THE INITIAL VALUES ¥{I1) AND THE INITIAL DERIVATIVES
35 C YP(I) ARE SPECIFIED AT IHE STARTING POINT T. FEHL ADVANCES
p C THE SOLUTION OVER THE FIXED STEP H AND RETURNS
s C THE FIrTH ORDER (SIXTH ORDER ACCURATE LOCALLY) SOLUTION
R C APPROXIMATION AT T+H IN ARRAY S(I).
a C Fi...., FS ARE THE ARRAYS OF DIMENSION NEON WHICH ARE NEEDED
C FOR INTERNAL STORAGE.
A C THE FGRMULAS HAVE BEEN GROUPED TO CONTROL LOSS OF SIGNIFICANCE.
R C FEHL SHCULD BE CALLED WITH AN H NOT SMALLER THAN 13 UNITS OF
i C RCUNDOFF IN T SO THAT THE VARIOUS INDEPENDENT ARGUMENTS CAN BE
o C DISTINGUISEED.
.r, C
el ¢
INTEGER NEQN, K
o3 REAL Y(NEQN).T,H,CH,Y (NEQN? ,F1(N SN) ,F2(NEQN),
i ; 1 F3(MEQNY, F4(NEQN) ,F5(NEQN) , S (NEQN)
qu CF=H/4.0
v DO 221 K=1,NEQN
e 221 F5(K)=Y (K)*LH*YP(K)
- c CALL 'F(T+CH,FS,F1)
CH=3.0*H/32.0
& DO 222 K=1,MNEQN
- 222 F5(K)=Y(K)+CH*(YP(K)+3 0*F1(K))
Y c CaALL F(T+3.0%H/8.0 F2)
o CH=H/2197.0
> DG 223 K=1,NEQN
’ 223 FR(K)-Y(K +cnx(1932 0*YP(K?+(7296 LO*F2(K)=7200.0*F1(K)))
J c CALL 'F(T+12.0%*H/13.0,F5,F3
5 X3
thaly CH=H/4104.0
A3 DO 224 K=1,NEQN
T 224 F5(K)=Y(K)+CH*((8341. o*yp(x) 845.0%F3(K))+
N 1 (29440. O*FZSK) 32832.0%F1(K)))
Wae . CALL F(T+H,F5,F4
, CH=H/20520.0
LR DO 225 K=1,MEQN
e 225 Fl(K)—Y(K)+CH ((~6080.0*VYP(K)+((9295.0*F3(K) -
o 1 *=4(x)))+(4104o 0*F1(K)~=28352.0%F2(K)))
~§ . CALL (/2.0
—
:;?i C COMPUTE APPROXIMATE SOLUTION AT T+H
- C
» CH=H/7618050. o
ey DO 230 K=1,NEQN
o 230 S(K)=Y(K)+CH*{(902880.0*YP(X)+(3855735.0*F3(K)-
GO 1 1371249. 0x54(vg;)+(3953 64.0%F2(K)+
Ko 2 277020.0*F5(K)
-" . C
A0S RETURN
A END
o 38
,.ﬂ_:4
o
1
b
il
] L)
p &

o "“"'_'."‘r"r‘ '
3 KO ARG !i\‘\‘c 4‘\'0.0"%‘ '0 A \"

T mITy.T F RTRAaRfAgT R O T

APPENDIX C
IPSC CONCURRENT SUPERCOMPUTER TECHNICAL DESCRIPTION

Implementation of the Runge-Kutta-Fehlberg method in chis thesis was
rertormed using an Intel Scientific Computer iPSC Concurrent Supercomputer. The

basic system consists of two elements, a cube manager and a cube, as depicted in
Froure Co1 L

TOEECCNS S AL L e e

<N

22 a2l

Figure C.1 32-Node iPSC Concurrent Supercomputer.

The cube manager i1s a desktop programming station that provides programming
support and system management. It consists of an Intel System 310AP Multibus-

¥ -,
8 S

39

"t WA NN

’K

S
»
3

N N I s o e '
""w- h n...t,a.t!o. o R

.....

"""""" PRI T Sl AU OISO Wy -.\ - CoY
Ol - r P ; ‘(
b 'l * (‘l 4 " ,3’ & 1~5 Qz ‘C‘ l E N .ﬁ_‘.' / N AN "..".' A

.... .l,t

t

A

o
. 'l‘»“'-"'..'y LY

Q‘P L)

»

based computer using an Intel 80286 central processing unit and an Intel S0287
numeric processing unit. It also contains a 5 1:.4” 140 megabyte Winchester disk. a
320K byte floppy disk, a 45 megabyte cartridge tape, and a 2 megabvte ECC RAM
memory. Additionally, it is equipped with an integrated Ethernet interface for
communicating with the cube, and an alphanumeric terminal for input, output. Cube
manager software consists of a UNIX-based programming and development
environment with FORTRAN, C, Assembler, cube control utilities and
communications, and system diagnostics.

The cube is a complete ensemble of microcomputers connected in a parallel
architecture. Each microcomputer, along with its own numeric processing unit and
iocal memory is referred to as a "node.” Nodes are connected together by high-speed
communication channels to form a self-contained "cube” in a free-standing enclosure.
Each node in the cube is an independent, single-board computer. The node contains
an Intel 80286 central processing unit and its companion 80287 numeric processing
unit. The node also contains 312K bvtes of NMOS dynamic RAM and 8 bidirectional
communication channels managed by dedicated 82586 communications coprocessors.
Cube software consists of a monitor and kernal residing on each node. The monitor is
contained in PROM and the kernal is loaded into node RAM after successful
initialization. [Ref. 10]

The interconnection scheme, or topology, for the iPSC is a "binarv n-cube” or
“hypercube.” The dimension n refers to the power of two corresponding to the number
of nodes in the cube. In the case of the iPSC computer used in this thesis, the number
of nodes is 16: thus, making it a 4-dimensional hypercube, as depicted in Figure C.2 .

Within a 4-dimensional hypercube, each node has 4 nodes adjacent to it. The
distance between a node and one of its adjacent nodes is defined to be 1. Additionaily,
there are 6 nodes with distance 2, 4 nodes with distance 3. and | node with distance 4
from any given node in the 4-dimensional hypercube. These internodal distances must
be considered when emploving parallel algorithms, in order to minimize distances over
which messages are passed.

10

B U A S b Gt DA X AR A B R Ot A i o DA T R T L R D

<

X
{
R

"‘,‘ 3

Figure C.2 4-Dimensional Hypercube Topology.

N
R
o
ol APPENDIX D
) PROGRAM LISTING EXCERPTS FOR THE TWO EQUATION
;::; SHOTGUN SCHEME 4
WYy
e The following listing is an excerpt from the node 0 program for the Shotgun
A
*, implementation of the two equation system.
t
*
b 220 buf(1)=
o buf(2)=h
t.- c
* cn=h/4.0
do 221 k=1,2
\ buf§3g=y(k&
I buf(4)=yp(k)
~d call sendw(ci,10,buf,16,k,1)
o 221 £5(k)=y(k)+ch=yp(k}
" c
g do 222 k=1,2 .
oy 222 call sendw(ci,20,f5,len,k,1)
¢
- do 223 k=1,2
g0) call recvw(ci,15,2z,4,cnt, frnode, frpid)
i 223 f5(frnode)=z
N c
N do 224 k=1
i) 224 call sendw(c1 30,f5,1en,k,1)
B o
do 225 k=1
Ry? call recvw(ci,15,z,4,cnt, frnode, frpid) 1
¥ 225 f5(frnode)=z
o5 c
o do 226 k=1
' 226 call sendw(c1 40,£5,1en,k,1)
¥ c
T do 227 k=1,
J call recvw(c1 15,2,4,cnt, frnode, frpid)
i 227 f£5(frnode)=2
.":Do c
b do 228 k=1
:, 228 call sendd(c:l. 50,£f5,1len,k,1)
’ c
e do 229 k=1,
L call recvw(c1 15,z,4,cnt, frnode, frpid)
229 fl(frnode)=z
‘ol c
N do 230
,:.: 230 call sendw(c1 60,£f1,1en,k,1)
¢ c
gl do 231 k=1,2
.-A.:. call recvw(ci,15,2z2,8,cnt, frnode, frpid)
b} f1 éfrnodeg zzgl
231 eee(frnode)=zz(2
ey ¢ ‘
Yy
)
Ko
a=:¢
N
Yy 42
X

o i

.y " GO,
Dot .““cu,-,'i c"o Rt SOSDN AN

BN ‘l h k c'u o IXEN Weleg %‘.‘ Rttt bl
x‘ﬂ SN ha " ‘% “ u

The following listing is the node 1 and node 2 program for the Shotgun
implementation of the two equation svstem.

program nodez2eq)
Covennnaan nodes 1 and 2......2 equation system....

integer chan,copen,nodeid,cnt, frnode
dimension buf(4§,d5(2;,zz(g)
equivalence (buf(i),t ,(buz(Z),h),(buf(3),a),buf(4),b)

Q

chan=copen(mypid())
nodeid=§ynodz%) (

10 c¢all recvw(chan,10,buf,l6,cnt,frnode,frpid)
tp=t+h/4.0)
call recvw(chan,20,d5,8,cnt,frnode,frp1d)
call fnode(tp,d5,wl, nodeid)
z=a+3.0*h*(b+3.0*w1§/32.0

call sendw}chan,ls,z,4,0,l)
tp=t+3.0%h/8.0 ,

call recvw$chan,30,d5,8,cnt,frnode,frp1d)
call fnode tg d5,w2,nodeid)
2=a+h*(1932.0%b+(7296.0%w2-7200.0%w1))/2197.0

call sendw(chan,b15,2,4,0,1)

tp=t+12.0*h/13.0 .

call recvwgchan,40,d5,8,gnt,frnode,frp1d)

call fnode(tp,d5,w3,nodeid
z=a+h*((8341.0*b—845.0*w3)+(2944.0*w2-32832.0*w1))/4104.0

call sendw(chan,15,z,4,0,1)
=t+h

call recvwgchan,SO,dS,B,gnt,frnode,frpid)
call fnode tg,ds,w4,node1d)
2=a+h*((-608 . 0*b+(9295.0%w3-5643.0%w4))
1 +(41040.0*w1-28352.0*w2))/20520.0

call sendw(chan,15,z,4,0,1)
tp=t+h/2.0 '
call recvw(chan,60,d5,8,cnt, frnode, frpid)
call fnode tg,dS,wS,nodeld)
zz(1)=a+h*((502880.0%b

1 + 3855735.0*w3-1371249.0*w4§

2 +(3953664.0*w2+277020.0%w5)
2z(2)=abs((~2090.0*b+(21970,0*w3~

1 +(22528,0*%w2-27360.0%wS))
call sendw(chan,15,2z,8,0,1)

go to 10

)
/1618050.0
15048.0%w4))

end

o0 o 0

subroutine fnode(tp,d,v,nodeid)
dimension d(2)

[y]

go to (1,2), nodeid
1 w=2*(d(1)~d(1)*d(2))
return
2 v=-(d(2)-d(1)*d(2))
return

end

43

Vit
o

by

A

|" L}
:‘5
3
o
B APPENDIX E
o PROGRAM LISTING EXCERPTS FOR THE TWO EQUATION FLIP-
*ﬁn FLOP SCHEME
X
e . o .
g The following listing is an excerpt from the node 0 program for the Flip-flo
Ny : P
ity implementation of the two equation system.
"
‘]
b
Sy 220 bufél =
Q bu
e [+
Hoe ch=h/4.0
c
, buf(3)=y(1)
288 buf§4g=¥fpgl)
s call sendw(ci,10,buf,16,1,1)
SN buf 3g=y(2)
Y] buf(4 =ypg?)
RO call sendw(ci,10,buf,16,3,1)
AN c
- do 2 k=1,2
;éi 221 f:(k)—y(k)+ch*yp(k)
W c
§)¢ call sendw(ci,20,£5,1len,1,1)
[C
Cags do 231 k=1,2
ﬁ;a call recvw(ci,15,zz,8,cnt, frnode, frpid)
' if (frnode .eq. 1} then
£1(frnode)=22(1)
e eee(frnode)= zz(2)
o else
iy frnode=frnode-1
P £1(frnode)= zz(l)
G eee(frnode)=2z(2)
b end if
LX) 231 continue
N
vt
L)
!
-Q::: The following listing is an excerpt from the node 1 program for the Flip-flop
[}
.:‘»:::a implementation of the two equation system.
s
7
:#- 10 call recvwéchan 20,4,8 8,cnt, frnode, frpid)
sl ul=2,0%(d(1)-d (1)*d(2})
:. z=a+3.0*h=~(b+3.0*wl)/32.0
‘ c
L4 call sendw(chan,23,bufl,l2) '
call recvw chan 32,bufl,12,cnt, frnode, frpid)

%%6 0*w2-7200. 0*wl))/2197 0

0 253
‘..:; wg o 21 d(él é

0 li a+h* 1932

N 1 recvw?chan .42, $ g ,4,cnt frnode frpid)
", call sendw(chan,43,d .3,19

e tp=telz, { 13,0

- 0*(d(1 d(1)*d(2))

e 44

e

B

" !‘

B F: v BAGSHEDHEN ettt
'..@ 5';;’,“ " 'm R ,,1 no l.e, A qshm B i 3. ﬁlg‘ Aﬂ.ﬁ. 0, .ﬁ 2y l‘c m 'a AR ,,Ne) ,1.\& “).. ‘!b.n.e XX ,a fe ity e ,e. |"g

T U Y TN W SR Y G e W e e e TE WO TR RR S TE RO o o

i =a+h*((8341.0%b-845.0*w3)+(29440.0*w2-32832.0*wl1))/4104.0
call recvw(chan,42, d 2g,4,cnt rnode, frpid)
call sendw(chan,43,d{1).,4,3

tp=t+h
w4=2, 0*(d§1) -d{1)*d(2))
d(1)=a+h*((- 6080. 0*b+(9295.0*w3-5643.0*w4))
1 +(41040, 0*wl-28352. O*WZ))/ZOSZO 0
call recvwgchan ,42 diz ,4,cnt frnode, frpid)
, call serndw(chan,43,d(1 ,4,3,15
N =t+h/2.0
N d =2,0%(d(1)-d(1)*d(2))
¥ 2z (1)=a+h*((202880.0%b
u“\ R 1 +(3855735.0*w3~1371249. 0*w4;)
LA 2 +(3953564.0*w2+277020.0*%w5))/7 618050 0
zz(2)= abs((2090.0%b+(21970.0*w3-1504 0*w4))
ik 1 2528.0*w2-27360. 0*w5‘)
AUk call sen w(cnan 15,2z,8,0,1)
4 c
:“é\ go to 10
o
T:F:\‘l
‘ﬁﬁ' The following listing is an excerpt from the node 3 program for the Flip-flop
)

implementation of the 2 equation system.

| P

b 10 call recvw(chan, 20 d,8,cnt, frnode, frpid)
L tp=t+h/4.0

KA call re.vwéchan 23 ,bufl,12,cnt, frnode, frpid)
oy wl--(d’z)- (1)*d(2 l

o déZ; 3.0*h*(b+3.0*wl1l)/32.0

k%’ c 'bufl(3)

NS

. call sendw chan 32,bufl,12,1,1)

. 8 t+3,

sy we2==(d(4 -d()*d 2))

4

> 21 a+n*(l932 0 b+§7296 .0*w2-7200.0*%w1))/2197.0
- 1 serdwgchan ,42)

chan,h43 dg 4 cnt frnode, frpid)

ply all recyw
i I g t+12, O*h 1
W w3=-(d(Zl *d 2%
) d(2 a+h (8341 0*b-845. 0*w3)+(29440 0*w2-32832.0*wl))/4104.0
) call sendw(chan,42, dé ; ,1,1)
‘.l.‘.'a %all ﬁecvw chan,42,d "cnt), frnode, frpid)
¢
wa A== (d(2)-d(1)*d(2))
,Jhﬂ d(2)= a+h*((-6080 0*b+(9295.0*w3-5643.0*w4))
ol 1 +(41040.0*w1-28352. 0*w2) /20520.0
e call sendw?chan ,42, d§2;,4 1,
R Eal% ﬁecvw chan,43,d(1) ,4 cnt frnode, frpid)
.. +
ol wh=-(d(ZA Az
P z2(1)=a+h*((902880.0*b
g‘” 1 +(3855735.0*w3~-1371249.0*w4))
1yx 2 +(3953664,0*w2+277020. 0*w5) /7618050.0
vl z2(2)= abs((2090.0%b+(21970.0%w3-15048.0%w4))
4 1 é 2528.0%*w2- 27360 0*w5))
: call sendw{chan,15,2z,8,0,1)
_— c
]Gy go to 10
!
':\; 45
4
o

VRTINS Vel o Lo 3

- N
- ' 5 0N i) . T »
RBII !“ﬁ%“&;'n‘,ﬁ$n:ﬂmpd\%ﬁﬂﬂﬁy ol A SN AR S KR DK T _.ﬂl, o AT Y

»
;
14
s
g |
K APPENDIX F
PROGRAM LISTING EXCERPTS FOR THE THREE EQUATION TRAIN
ém SCHEME
ty
vd
“5 The following listing is an excerpt from the node O program for the Train
" prog
He implementation of the three equation system.
P q
e
e 220 buf(1)=
:' ‘ buf)=h
¢ Cc
Y ¢h=n/4.0
E e
uf (k+2)=
R buf§k+5g=§p(:){)
.;é 222 buf(k+8)=£5(k)
, c
o do 224 ijk=1.4
Y call senéw§c1, 0,buf,68, g
A call sendw(ci,l0,buf,68,2
c
: do 223 ii=1,2
P callf r(efcnw(dCL 10, bufl tGhB cnt, frnode, frpid)
A 1 rnode en
o DuE(10)= buﬁ(ls)
Oy]
‘ buf§9)‘bufl(12)
M buf(11)=bufl(14)
end if
. c
e 223 continue
: 1 224 continue
| c
2 it s B ey
e . dcazzssen W :1 u
, o 11=1,
vi call recvw(ci,10,bufl,68, cnt, frnode, frpid)
) if (frnode .eq. 2) then
oy £1(2)=buf1(13)
S8 leee(Z)'bufl(le)
oy R
:.s z S §=bufl§
W £1(3)=bufl(14
' eee§1;=buf121 g
. eee(2)=bufl(17
g end if
N 225 continue
Q.g
o
RN
- The following listing is the component node for the Train implementation of the
4
;rs - three equation system.
5.3
LW X
g
‘;'3 .
YR .
o nodp2=nodeid+2
5'.:;,: 36
,:.:,'

Jou Y D0 O LG BRG0G0 OGN0 Ot DA
O AT A e x,\ft,',1,‘?v;‘!i5‘f~.‘:v,‘ OO OO R DO

DT

-~ W TS s TR R e T s e s e e e e e

nodp5=nodeid+5

i rnodpll=nodeid+1l
”\: nodplé4=nodeic+14
. C
5* 10 call recvw(chan,10,buf,len,cnt, frnode, frpid)
tp=t+h/4.0
a=buf({nodp2
i b=buf(nodp5)
o . call fnode(tp,d5,wl, nodeid
\ uf {nodpll)=a+3. *(b+3.0*w1)/32.0
N$ buf{nodpll) 3.0%h*(b+3 /
c
v call sendw}chan,lo,buf,len,4,ndest,l)
K ol tp=t+3.0*h 8.0
b call recvwéchan,lo,buf,lgn cnt, frnode, frpid)
call fnode(tp,d5,w2,nodeid
O, buf(nodplil)=a+h*(1932.0%*b+(7296.0*w2-7200.0%*wl))/2197.0
\‘ C
)

‘ call sendw(chan,10,buf,len,ndest,l)
b tp=t+12.0*%h/13.0 '
o, call recvwéchan,lo,buf,lgn cnt, frnode, frpid)

o call fnode(tp,d5,w3,nodeid
: buf (nodpll)=a+h*{(8341.0%b-845.0%w3)+(2944.0*w2-32832.0%wl))
1 /4104.0

. c
;i call sendw(chan,10,buf,len,ndest,l)
B tp=t+h
B call recvwgchan,lo,buf,len cnt, frnode, frpid)
oo call fnode(tp,d5,w4,nodeid
Tl buf(ncdfllg=a+h*((-6080.0*b+(9295.0*w3-5643.0*w4))
N 1 +(4i0¢0.0*w1-28352.0*w2))/20520.0
. c
o gal% gggdg(chan,10,buf,len,ndest,1)

p=t+h/2. _
.ﬁﬁ call recvwéchan,lO,buf,len cnt, frnode, frpid)
iy call fnode(tp,d5,w5,nodeid
N buf(nodgug:am*((9ozsao.o b
s 1 +{385 735.0#w3-1371249.0*w4§)
0 2 +(3653664.0*w2+277020.0*w5))/7618050.0 .
buf(no 514)=abs((-2090.0*b+(21970.0*w3-15048.0*w4))

s 1 +(22528,0%w2-27360,0%w5))
>$ﬁ call sendw(chan,10,buf,len,ndest,l)

o ; go to 10

(] C
|‘ 'l end

J <
e subroutine fneode(tp,d,v,nodeid)
h#. dimension d(3)
) [of
'ef‘ go to (1,2,3), nodeid

c
o 1 v=-d(1)+d(2)
BLS return
c

o] 2 v=d(1)+2*%d(2)*d(3))
Qg return
B c
P 3 v=d(2)-d(3)
Qg return
pa end
e
s
K
;ﬂﬂ

!‘h
R 47
,_;.!.
RN

FGAR TSR EANE NS 1 TN Y
TR AT ATy 3 T Yy A M s 'g S X

Bt el

oy, 47y Vg W BT W0V Tle VgN 'i'i i"i"‘lo
RO R R DRV NN NN MR R <,

g
l‘.":
N :

0y
e:::!:‘
AN

W LIST OF REFERENCES

n"":
‘:::. . . gy . I3 -
o L. Roberts, C.E. Jr., Ordinary Differential Equarions, Prentice-Hall, Inc., 1979.

v

by

" 2. Thomas, G.B. Jr. and Finney, R.L., Calculus and Analytic Geomertry, Addison-
gt Wesley, 1984,
¢ A,
':0' 3. Runge, C., “Ueber die numerishe Auflosung von Differentialgleichungen,” Math.
o Ann., Vol. 46, pp. 167-178.

l’;:.

. 4, Kutta, w., “Beitrag zur naherungsweisen Integration totaler
) 2 Differentialgleichungen,” Zeit. Math. Phy., Vol. 46, pp. 435-453.
A q"

. " S. Kopal, Z., Numerical Analysis, pp. 195-213, Chapman and Hall, 1961.
e
_';‘ 6. National Aeronautics and Space Administration Technical Report TR R-315,
5 Low Order Classical Runge-Kutta Formulas With Stepsize Control and Their
Application to Some Heat Transfer Problems, E. Fehlberg, July 1969.

] P 3

Eo
:a 7. Forsyvthe, G.E., Malcolm, M.A., and Moler, C.B., Compurer Methods for
i Mathematical Computations, Prentice-Hall, Inc., 1977.
.
i:"ii‘ S. Shampine, L.F., Watts, H.A., and Davenport, S.M., "Solving Nonstiff Ordinary
::'o. Differential Equations--The State of the Art,” SIAM Review, Vol. 18, pp.
;% 376-411, 3 July 1976.

, " 9. Hull, T.E., and others, “Comparing Numerical Methods for Ordinary Differential
i Equations,” SIAM Journal for Numerical Analysis, Vol. 9.
w3
;:::: 10. Intel Scientific Computers, iPSC Technical Description, SN 175278-003,
o September 1986.
o
e
O:Jl:
[.'l:
S
s
\:‘:“
[} ¢.o
o

m" !
s 48
R

s

% W UOVOUOO0OOR SN POUNCOCOOOR OO NI OO0
A eﬂl:'!tg*ﬁ’(‘l‘u_‘lf;‘}!;’l‘,,‘5“:'»,. M ;‘;'l‘.-,t‘.‘ﬂ (‘l‘p.l‘ I'\’ﬁ"!“.‘g"’}ii!y‘=' t b

VT W™ TR W TN WV W Ow Wy o ey v'-'rvvvr--r-w'T

BIBLIOGRAPHY

Collatz, L. The Numerical Treatment of Differential Equations, Springer-Verlag, 1960,
Conte, S.D. and de Boor, C., Elementary Numerical Analysis, McGraw-Hill, 1980.

Gear, C\V., Numerical [nitial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Inc., 1971.

K Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis, Addison-Weslev, 1984.
-* Goldstine, H.H., 4 History of Numerical Analysis from the l6th Through the [9th
“'j Century, Springer-Verlag, 1977.

’g’t

Lapidus. L. and Seinfeld, J.H., Numerical Solution of Ordinary Differential Equations,
Academic Press, 1971.

, Milne, EXW., Numerical Solution of Differential Equations, Dover, Inc., 1970.
o 2

z:: National Aeronautics and Space Administration Technical Report TR R-287, Classical
)

Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control,
W E. Fehiberg, October 1968.

o Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes,
BN Cambridge University Press, 1986.

n
.-‘

oo
eI LT EE

#

_.
'b’;-'

TIIETT
A

L ¥

o 49

‘(A‘rt\

AR R - Th Ol e R ¥4

. . e - . um N 7 . o . N .
‘ 0 0 ! Lt - . Py 1 : N DA AT W X
:‘. '(:’P;j;‘,’:.‘.’Jéﬁ.&l‘,"._!I.’.' I d.hn"-'_."‘ﬁ-.!{, dakidds ..?"':'n:!‘g:! R X ',"u’.q LA SR ‘n.."'-eﬁjqﬁ.‘g A »& W g o et Y .d SRS

T - T - Lok ok osh sale tah tal sl ol Sl Ba -
LI
?t'u'::
oy
J

"vl\ |
b |
z::: J |
b
b
K INITIAL DISTRIBUTION LIST
;a.;q No. Copies
,"s 1. Defense Technical Information Center 2
Y Cameron Station
LA Alexandria, VA 22304-61435
g 2. Library, Code 0142 2
‘fl‘:‘ Naval Postgraduate School
:2.' Monterey, CA 93943-5002
:ﬁ:‘, 3. Department Chairman, Code 53Fs 2
e Department of Mathematics
. Naval Postgraduate School
2 Monterey, CA 93943-5000
%) 4. Prof. C.E. Roberts, Jr. 5
i Mathematics and Computer Science Department
W Indiana State University
" Terre Haute, IN 47309
*:. 4. Prof. A.L. Schoenstadt, Code 53Zh 1
:‘. Department of Mathematics
A Naval Postgraduate School
W Monterey, CA 93943-3000
E 5. LCDR M.L. Mitchell USN, Code 55Mi 1 {
..I' .
! Department of Operations Research
2 Naval Postgraduate School |
k Monterey, CA 93943-3000
[
N 6. MAJ. Rich Adams USAF, Code 52Ad 1
0 Department of Computer Science
e Naval Postgraduate School
o Monterey, CA 93943-5000
'_f::’ 7. Mr. Denney R. Cole 1
. Intel Scientific Computers
- 13201 N.W. Greenbrier Parkway
o Beaverton, OR 97006
'§ 8. Captain C.F. Mayo USMC 6
& 11027 Stanrich Court
' Fairfax, VA 22030
KN 1
!
!"
B ‘
!.‘
i 50

OO % 10) 1) W, 1,) %, ¢ NN
AL O XA O O O e SO

RONIOCR ’.t'} 5‘"“1‘ AA?’-A‘QQ,‘,?“E‘. "‘"')1“" "‘.,!L’.f‘a)h’s’l‘v’!‘q 0y o)

